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Abstract

The fundamental goal of this project is to create an investment strategy which leverages
the theoretical profitability of a portfolio centered on effective risk mitigation.1 We
accomplish this by focusing on investing in distinct opportunities, which are very likely to
precipitate high returns, but are temporally rare. We accomplish this by creating a
fundamentally simple strategy which meets these goals. First, we conducted detailed
research on highly cointegrated pairs, all with large market capitalization, diversified
across several sectors with historical stability. We then set entry and exit thresholds via
the Ornstein-Uhlenbeck Process which ensures that entry into the associated pairs
trade is only executed when a highly unlikely level of divergence is demonstrated. This
level of pair divergence, while unlikely, is highly likely to be followed by mean reversion.
Our strategy remains unique in that it does not continually search for profitable
investments via complex statistical techniques across a huge array of covariates, or
make frequent trades. Rather it makes use of our hypothesis that markets will
fundamentally behave as expected - and when they do not - there are very brief
moments of distinct profitability as securities will likely revert to stability.2 A simple
strategy which leverages this fact will be the most successful.

Introduction

The Saint Petersburg paradox tells us that risks should be mitigated as downside losses
require huge reverse moves to overcome due the geometric nature of investments3 If
downside losses are not mitigated this compounding effect of the investment causes
significant decreased returns. With this consideration, a successful strategy should be
designed incorporating risk mitigation intrinsically.

The primary contribution of this project is structuring a strategy which outperforms
market indices, while providing lower variance in returns. This is executed via two
simple practices, coupled together: an effective pairs trading strategy via the
Ornstein-Uhlenbeck Process, complimented by a detailed search of diversified pairs.4

Strategies which are constantly scouring statistical relationships among covariates for
opportunity in order to make decisions - by hour, minute, or more often - are likely to
come with high variance. Beyond pure variance, these complex strategies are trained
with enormous parameter sets, leading to overfitting and poor out of sample
performance. Instead, when developing our strategy we considered the holistic

4 See Rampertshammer, Stefan. “An Ornstein-Uhlenbeck Framework for Pairs Trading.”
3 See Bernoulli, Daniel. “Exposition of a New Theory on the Measurement of Risk.”
2 See "Why Do People Still Invest in Hedge Funds." Mark Spitznagel, January 2020
1 See "Amor Fati." Mark Spitznagel, January 2019



statistical assumptions associated with the behavior of asset pricing techniques, along
with the long run utility of our portfolio.

We decided to focus towards stability through an investment strategy which first
provides consistent returns above market indices. This investment is achieved via a
pairs trading strategy, which is profitable whether the market is in a bull or bear cycle, or
in other words, this strategy is directionally indifferent with respect to the market. When
profitable paris trades are not available, we hold our cash conservatively. This steady
hold until profitability requires detailed research into two components:

1. We must identify profitable and safe pairs which exhibit steady state behavior in
almost any market condition.

2. Pairs must be members of a diversified basket and subsequently we must employ
an effective method for determining entry and exit thresholds for these pairs.

For the remainder of the paper, we will expand on our development of the first and
second points outlined above, and then provide analysis of the resulting portfolio.

Background

Pairs Trading
In the market, there are many pairs of stocks that follow similar patterns: when one
stock increases (decreases) in value, the other increases (decreases) in step.
Intuitively, one might expect there to be many such pairs in common sectors: events
and news related to the sector might have a common impact on many stocks, and
stocks in a common sector may follow similar patterns.

When we identify a pair of stocks that exhibit the same general patterns, we may
attempt to predict the price of one stock based upon the price of the other. Call one
stock P and the other Q. Then, the price of P, Q at time t can be called Pt, Qt.We can
perform an ordinary-least squares (OLS) regression upon the observations of log P, log
Q at different timepoints and define a line-of-best-fit with slope and y-intercept : β α

𝑙𝑜𝑔 𝑃
𝑡
 =  β 𝑙𝑜𝑔 𝑄

𝑡
 +  α +  ϵ

𝑡

The residuals of this regression at time t are given by . By the definition of OLS, the ϵ
𝑡

residuals will have mean zero. An investor will confidently proceed with pairs trading if



the residuals on a given pair are mean-reverting: when the residuals drift from zero in
absolute value, they tend to return to zero. A pattern is defined between P and Q, and
we can predict the price of P at any given time from the price of Q. If P exceeds this
predicted value, we know that the residual is positive -- for now. As investors trade on
pairs with mean-reverting residuals, we can expect that the residual will eventually tend
to zero, and by extension, the actual price of P will eventually tend to its OLS-predicted
price. This could happen in one of two ways -- either the actual price of P decreases
in value, or the predicted price of P increases in value (corresponding to an increasing
price of Q). In the described scenario, an investor following the pairs trading strategy
would long stock Q (with market weight ) and simultaneously short stock P (withβ 

1+β

market weight ). When the two stocks converge in value, the investor will earn a1
1+β

profit.

The minimum (in absolute value) residual in which we enter a pairs position is called our
entry threshold, and the residual at which we liquidate an existing pairs position to
realize a profit is called our exit threshold. The residual at which we liquidate an
existing pairs position to avoid downside risk is called a stop-loss threshold.

The investor has the advantage of directional indifference: if the price of P and Q go up
by the same dollar amount, we don’t care: the gains from our long on one stock will
cancel the losses from the other (so long as the capital is split correctly between our
positions on P and Q). The same is true if both stock prices decrease in value. The
only bet we make is on the relative spread between P and Q and this is the only
criterion of our profit.

Protective Put/Protective Call Options Strategy
Our initial theory development for this project incorporated a protective put / protective
call option strategy. This strategy was later removed from our implementation due to
lack of performance; however, we still believe its theoretical qualities warrant
discussion.

If an investor believes that a certain stock will appreciate in value, he or she may take a
long position in this stock. Suppose, however, that the investor is risk-averse and is
concerned about losing money in the event that the stock price decreases in value. If
an investor holds a long position on N shares of a security, he or she may purchase an
out-of-the-money put option (a put option with a strike price below below the current
market price of the underlying security) in such a quantity to purchase N shares of the
underlying security (typically, this will be N/100 contracts). In the event that the
underlying security decreases in value, there is a limit to the amount of money that the



investor can lose -- once the security decreases in value below the protective put strike
price, any further losses are effectively canceled by new profits from the put option
contract.

Similarly, an investor may purchase a protective call option -- a call option with a strike
price above the current underlying market price -- to protect against upwards
movements in a short position on the underlying asset.

This strategy is analogous to insurance -- an agent pays a small fee (in this case, the
cost of an OTM put/call option) in exchange for some protection against risk (in this
case, downside on the underlying security).

Implied Volatility
As our initial strategy (which was later removed) incorporated options purchases,
understanding and analyzing implied volatility - a key component of options pricing -
was critical. Among American options, option prices tend to increase as underlying
volatility increases -- if the underlying volatility goes up, it is more likely that at some
point between the present and maturity, the underlying price will fall above the price of a
call (or below the price of a put). One popular model for computing the price of an
option is Black-Scholes, which takes (among other factors) current underlying price,
strike price, volatility, and expiry as inputs and outputs a fair market price for the
contract (note that Black-Scholes assumes that you exercise the option only on the
expiry date, as in European options). We can reverse this process: by inputting current
market price, expiry, strike price, and underlying price into Black-Scholes, we can
retrieve as output a volatility. This is the volatility that investors believe the underlying
will undergo, and it is referred to as implied volatility.

Our Final Strategy

Pair Selection Methodology
K-means clustering is a popular unsupervised machine learning algorithm used in
various domains. It is particularly useful for algorithmic pairs trading, which involves
identifying pairs of assets that have a similar price movement pattern, taking advantage
of the price differences between them.

In pairs trading, two assets are chosen based on some predefined criteria, which in our
project is their sector and market capitalization. These assets are expected to
demonstrate cointegration, or move in a similar pattern. A deviation from this pattern is
considered a potential trading opportunity. K-means clustering can help to identify such



pairs by grouping assets with similar price movement patterns, specifically if we cluster
only on price movements.

To use K-means clustering for pairs trading, historical price data for a set of assets is
first collected and grouped according to sector. In this project we employed the most
recent 200-days of returns as the historical price data. This data is then preprocessed
employing principle component analysis (PCA) to reduce the dimensionality, within
sectors of consideration, of each security inorder to perform clustering analysis in a
manageable space. We compressed the 200-days of return data into two principal
components. We then applied the K-means algorithm to the compressed data to group
assets into clusters based on their price movement patterns.5

The number of clusters is chosen based on the elbow method or any other appropriate
method for determining the optimal number of clusters. In this analysis we employed
three clusters. Once the assets were grouped into one of the three clusters, pairs of
assets within each cluster were chosen as potential trading pairs. These pairs are
expected to have a high correlation in their price movements and hence, cointegration.

Below we have provided figures of each of the six sectors we employed the K-means
clustering technique, and the associated pairs we selected based on three criteria:

1. Pair is in the same cluster (robust performance focused)
2. Pair is in the top three closest euclidean distance (robust performance focused)
3. Pair performs well with in sample performance of pairs trading

5 See Trachevski, Matthew. (2019). Dynamic Pair Selection with Machine Learning Clustering,
Cointegration Testing, a Stop-Loss Policy and Partial Pair Order Buffering.





Additionally, we compared the k-means criteria to the ADF score to benchmark. We find
that almost all of the selected pairs are below or close to the typical threshold used to
determine ADF cointegration. Please see the table below for results:6

6 See “Statistical Arbitrage by Pair Trading using Clustering and Machine Learning.”



Pair Industry ADF Score Euclidean
Distance (2D-PCA)

( JNJ, ABBV ) Healthcare 0.766 1.70

( DUK, AEP ) Utilities 0.048 0.97

( NKE, SBUX ) Consumer Cyclical 0.161 2.15

( SPGI, MA ) Financial 0.293 0.34

( DLR, CCI ) Real Estate 0.059 4.26

( PM, PG ) Consumer
Defensive

0.082 5.48

( TMO, UNH ) Healthcare 0.108 1.28

( COP, EOG ) Energy 0.002 1.46

Ornstein-Uhlenbeck Processes (OU) for Entry and Exit Thresholds
Equations in the section are taken from Leung and Li and/or Wikipedia.

The OU process is a stationary gaussian Markov process, which models
stochastic dynamics under the assumption of mean reversion. The process can be
defined by the stochastic differential equation defined below, where both ( ) are theθ, µ,  σ
parameters, and defines a Wiener process. In particular, is denoted as the𝑊𝑡 θ 
long-term mean of the process, is denoted as the drifting power, and is the totalµ σ
volatility of the Markov motion.

𝑑𝑥𝑡 =  − µ θ − 𝑥𝑡( )𝑑𝑡 +  σ𝑑𝑊𝑡
𝑊𝑡 =  𝑊𝑡 − 𝑊0∝𝑁(0, 𝑡)



Figure.1 Simulation of OU process with different parameters

Above are four graphs generated by a single simulation where parameters are
labeled in the title of the plots. Comparing the simulation where = 1 with the simulationσ
where = 5, we can observe that the range of is wider for = 5 than that of = 1.σ 𝑥𝑡 σ σ
Furthermore, comparing the simulation with = 10 to simulation with = 20, we canµ µ
observe that the simulation with higher tend to converge to the mean with higherµ
frequency. In conclusion, both of the and are important in the paris trading, sinceσ µ
higher drifting power indicates higher probability and higher frequency that the z-score
will converge to the mean. Furthermore, the value of could also determine when theσ
strategy should enter and exit.7

In the normal pairs trading, we typically employ the constants of 2 and -2 forσ σ
thresholds. However, not every pair follows similar patterns. In other words, it is possible
that 2 and -2 will never be reached during the trading period, and result inσ σ
unprofitable behavior for the portfolio. However, in our case, in order to find the suitable
threshold for different pairs, we use a maximum likelihood estimator to determine the
OU parameters ( ) of selected pairs using 100-day rolling windows, and employθ, µ,  σ
Monte-Carlo simulations on the process which is generated by the estimated
parameters. We then consider 5% and 95% percentile of the z-score as the exit and
entry thresholds.

Step1 (Leung and Li, 2016):

(pdf of OU process)𝑓𝑂𝑈 𝑧
𝑖−1

; θ, µ, σ( ) = 1

2πσ*
exp 𝑒𝑥𝑝 

− 𝑧
𝑖
−𝑧

𝑖−1
𝑒−µ∆𝑡−θ 1−𝑒−µ∆𝑡( )( )2

2σ*2( ) 

Where zi is the z-score at t = i

σ* =  σ2 1−𝑒−2µ∆𝑡

2µ
Every single trading day, we obtain past 100 day’s z-score , and then maximize the
likelihood function:

7 See Leung, T., & Li, X. (2015). Optimal mean reversion trading with transaction costs and stop-loss exit.



𝑙 𝑧
1:100( ) =  − 1

2 ln 𝑙𝑛 2π( ) − ln 𝑙𝑛 σ*( ) − 1
2*100 Σ(𝑧

𝑖
− 𝑧

𝑖−1
𝑒−µ∆𝑡 − θ(1 − 𝑒−µ∆𝑡))

2

Step2:
After we have obtain the MLE estimator ( ), we assume the future z-scoreθ, µ,  σ

will follow the OU process statistically with the estimated parameters ( ), and thenθ, µ,  σ
execute trades based on the expected 5% and 95% percentile of z-score as the trading
signal, employing a Monte-Carlo simulation.

Figure.2 5 simulations with parameter (0,20,5)

Figure 2 shows 5 simulations of the OU process with parameters (0, 20, 5) with
rolling windows of 252 trading days. In practice, the entry threshold will be determined
by the expected value of 5% percentile and 95% percentile of the z score:

𝑒𝑛𝑡𝑟𝑦 𝑓𝑜𝑟 𝑙𝑜𝑛𝑔 𝑠𝑝𝑟𝑒𝑎𝑑:
𝐸

1

5

∑5%𝑖𝑙𝑒 𝑧
𝑖

⎡⎢⎢⎣

⎤⎥⎥⎦
5

𝑒𝑛𝑡𝑟𝑦 𝑓𝑜𝑟 𝑠ℎ𝑜𝑟𝑡 𝑠𝑝𝑟𝑒𝑎𝑑:
𝐸

1

5

∑95%𝑖𝑙𝑒 𝑧
𝑖

⎡⎢⎢⎣

⎤⎥⎥⎦
5

𝑒𝑥𝑖𝑡 𝑓𝑜𝑟 𝑏𝑜𝑡ℎ 𝑙𝑜𝑛𝑔 𝑎𝑛𝑑 𝑠ℎ𝑜𝑟𝑡 𝑠𝑝𝑟𝑒𝑎𝑑:

𝐸
1

5

∑5%𝑖𝑙𝑒 𝑧
𝑖

⎡⎢⎢⎣

⎤⎥⎥⎦
5 +µ

𝑖

4
Limitations:

1. Notice that z is the standardized residual score which is calculated by the regression
coefficient beta, however, during the back-testing period, the beta will be negative



during some period between 2017 and 2021. Negative beta will cause our strategy to
long or short both stocks in the selected pairs.

2. There may be some periods when the regression beta is very small, and in that case,
our pairs-trading returns are largely dependent on the performance of single stock.

Additional Risk Management with Tiingo
Further risk management is employed incorporating sentiment analysis using the Tiingo
library as a risk-management measure. Whenever a pairs trade is placed, we measure
the average sentiment score of the past fourteen days for each stock in the pair. Then,
while we hold the position, we liquidate both pairs if their sentiment scores dip 3
standard deviations below the average that we calculated.

Performance on In Sample and Out of Sample Periods

Updated Strategy

Below, clearly denoted graphically and in tables for precision, is a breakdown of our strategy’s
performance in the specified in sample and out of sample testing periods. Backtest URLs are
also provided for reference. Of note: Tiingo risk management is not included for these backtest
results, and there is some stochasticity to the performance of this strategy. These points are
discussed further after the plots.

In Sample (Jan 1 2017 - Jan 1 2021):

Backtest URL https://www.quantconnect.com/terminal/processCache/?request=em
bedded_backtest_c4f745ddec625ff7b3a8c2fb9e6abdb6.html

Return 16.04%



Sharpe Ratio 1.137

Drawdown 3.1%

Out of Sample (Jan 1 2023 - Apr 1 2023):

Backtest URL https://www.quantconnect.com/terminal/processCache/?request=em
bedded_backtest_878897c62dbca32abc758f41ca3d5f8a.html

Return 1.641%

Sharpe Ratio 2.576

Drawdown 0.7%

LiveTrade (Apr 18 2023 - Apr 24 2023) - Backtested:
Because our livetrade used an old strategy, we decided to backtest the livetrade time
period using the newer strategy. It does not execute any trades during this time period.

Backtest URL https://www.quantconnect.com/terminal/processCache/?request=em
bedded_backtest_5818572dc3b1cdb665d4180a37ec3a0a.html

Return 0

Sharpe Ratio 0



Drawdown 0

Discontinued Strategy

LiveTrade (Apr 18 2023 - Apr 24 2023) - Deployed Apr 18:
Below are the live-trade is in the Group6-Final-Livetrade project The following statistics
were determined on Apr 25 2023 at approximately 10:30am:

This execution follows a discontinued strategy (using the options insurance). We have
backtested over this same period using the newer strategy (results are in the next
section):

Return -4.4%

Sharpe Ratio Not provided by QC

Drawdown Not provided by QC

Due to technical runtime limitations, the above results were generated without Tiingo
sentiment integration. Even so, we have observed that Tiingo does not cause any pairs
to liquidate in these time periods, which makes sense -- our drawdown is very limited,
so risk management tools such as Tiingo would not have much reason to execute. The
Tiingo component of our strategy proposal should not impact our performance over
these periods.

Note: due to the fact that we are estimating quantities related to the OU fitting via Monte
Carlo simulation, there is some stochasticity in the results that we attain. Thus, the
statistics associated with our backtests will fall within some range if repeated. The
results submitted are good, but not atypical, for our algorithm.



Comparison: Traditional Pairs Trading

Backtest URL https://www.quantconnect.com/terminal/processCache/?request=em
bedded_backtest_43be5f2ef22782e2d08137d3bc98b2a9.html

Return 0.854%

Sharpe Ratio 1.38

Drawdown 0.7%

Our implementation features better return and Sharpe ratio over this period for this run
(again, there exists stochasticity with the OU process). The advantages of OU are less
clear for the in-sample period.

Conclusion from Backtests of Updated Strategy

Ultimately, employing our strategy provided a return of 16.04%, with a Sharpe ratio of
1.137, and drawdown of 3.1% for the in-sample testing period. Furthermore, our
strategy provided a return of 1.164%, with a Sharpe ratio of 2.67, and drawdown of
0.67% for the out-of-sample testing period. These are very acceptable results and meet
the goals of our fundamental strategy with good returns and low risk / drawdown.
Additionally, our pairs trading strategy performs better than traditional pairs trading
techniques.

We believe the profitable performance of our strategy is due to leveraging the OU
modeling process (as demonstrated by our results provided above) and employing the
PCA / K-means process for determining profitable pairs.



Discontinued Strategies

Combining Protective Puts/Calls with Pairs Trading
In traditional pairs trading, an investor will implement several thresholds: an entry
threshold, which determine when a pairs trade position is entered, an exit threshold,
which determines when sufficient profit (considering risk) has been generated and the
pairs position is closed for a realized profit, and a stop-loss threshold, which determines
at what point we liquidate the position and realize a limited loss to prevent further
downside. From our preliminary analysis, we found that many pairs that diverge beyond
pre-determined stop-loss thresholds would eventually converge to a profitable position,
but the uncertainty and drawdown associated with temporary divergence mandates a
stop-loss liquidation to avoid potentially significant losses.

We proposed a strategy to mitigate this problem in our midterm presentation. In the
strategy, we define an entry and exit threshold, but do not define any stop-loss
threshold. Instead, we purchase an out-of-the-money (OTM) put option on one
underlying security of our pair, and an OTM call option on the other underlying security.
Under the proposed strategy, the protective call and protective put option contracts are
purchased in a quantity sufficient to buy or sell the entire position of the associated
underlying security. The strike price of these OTM options would be purchased a far
distance from the current market price of the underlying security, ideally so much so that
the OTM options contracts would be inexpensive to acquire.

The ownership of the option contracts enable an investor to eliminate any stop-loss
threshold without drawdown fears. In the event that the pair diverges in value, then the
options would provide some protection against drawdown and losses. The following
figure provides an example:



Figure: Options Insurance Protects Wayward Pair
In the above example, an investor bets that the log-prices of AAPL and MSFT
converge in price. Instead of implementing a stop-loss order, an investor

purchases a protective OTM call option on AAPL and a protective OTM put option
on MSFT with strike prices illustrated by the purple lines. If the price of AAPL
trends upwards, then losses are limited -- any price movement beyond the
protective call strike price will be covered, and any downward MSFT price
movement beyond the strike price of the protective put strike price are also
covered. Then, an investor can leave this pairs position open without fear of
drawdown and potentially profit on eventual convergence (dotted blue line).

In a traditional pairs-trading algorithm, an investor forms a hypothesis only with respect
to the spread between the log-prices of the securities in the pair, not on the direction of
the market. For example, following the previous example, if the entire technology
section improves and the value of a share of MSFT and AAPL both go up by $100, the
investor does not care -- the gains from the long position on MSFT cancel the losses
from the short position on AAPL. The same is true of a sector downturn. In our
implementation, an investor is no longer entirely indifferent to movements in the market
as before. If both AAPL and MSFT increase in value by $100, then we will earn a profit
on our long position of MSFT and a (possibly limited by the protective call) loss on our
short position of AAPL. If the pair diverges in value, it is still possible for a profit to be
earned: if both stocks significantly increase (decrease) in value, one profits from the
long (short) position and suffers a clipped loss on the short (long) position and it is
possible for the profit to exceed the loss. In traditional pairs trading, it is never possible
for a trader to profit with a spread that grows in absolute value. The table below
summarizes the profit/loss outcomes for different pairs behavior.



Table

Outcome Profit relative to traditional Pairs
Trading

No Options Exercised-
w/ or w/out Spread Shrinking in absolute value

Profits same, less cost of options

One Option Exercised-
w/ Spread Shrinking

Profits likely greater

One Option Exercised -
w/out Spread Shrinking

Possibly profitable (not possible
traditionally)

Two Options Exercised Losses reduced

Implementation
The success of this strategy heavily depends upon procuring inexpensive option
contracts. If the log-prices of the securities of the pair converge in price, we would earn
a profit in the traditional pairs-trading approach. In the proposed strategy, the price of
the protective call/put options would reduce the total profits enjoyed by the investor.
Thus, the proposed strategy is heavily dependent upon procuring inexpensive options.
To determine an OTM strike price that will be inexpensive, we conducted the following
approach: we retrieved the past M days of returns, randomly uniformly sampled these
returns with replacement N times to estimate the security price N days into the future,
and repeated this process S times. The S predictions of the future stock price describe
a distribution of estimates for a future stock price. Of our S estimates, we would pick
the Q quantile estimate and set this as the strike price of our protective call/put option.
For example, if M=60, N=30, S=100, and Q=0.05, we would retrieve the past 60 days of
MSFT returns, uniformly sample these returns 30 times to estimate the price 30 days
into the future, repeat this process 99 times to produce 100 estimates of the
30-days-out price, and select the 5th-percentile such element as the strike price of our
protective put. The same process would be repeated to find the 95-percentile future
price of AAPL to determine the strike price of a protective call. The expiration date of
our protective call/put would be set to N.

Limitations
In experimenting with this approach, we encountered several problems:



● Limited Option Contract Information:We are searching for contracts with a
medium expiry date and a very OTM strike price. Indeed, these are not the most
sought-after option contracts. The QuantConnect platform was not able to
consistently produce option contracts that met all of our requirements, including a
very OTM strike price.

● Volatility Smile: It is a well-documented fact that the implied volatility of
contracts increases as the strike price moves further away from the current
market price. As our strategy relies upon low option contract prices, we require
extremely OTM option contracts. These contracts will have higher-than-typical
implied volatilities, and by extension, will typically have higher prices. This
curtails the ability to get cheap option contracts -- a necessary component of this
strategy.

● Low Liquidity: Options that are very OTM are not bought or sold in high
quantities. As a result, a market maker will typically charge a higher bid-ask
spread, meaning that higher fees will be required to execute an acquisition of
very OTM options. This also raises options contract costs -- undercutting profits
necessary to sustain this strategy.

Discontinuation
For all of the reasons outlined in the previous section, we determined that purchasing
protective calls and puts was a nonoptimal risk management strategy. The sparsity of
option contracts information -- and the high prices of those contracts for which we have
information -- make this strategy less optimal than a traditional pairs trade with a
stop-loss threshold.

Future Improvements

Future Improvements to OU Modeling:

Equations in the section are taken from Leung and Li.

A possible improvement could be achieved by fully implementing the OU modeling
methodology outlined in Leung and Li 2016 paper, which provides us with a method
which no longer requires calculating the hedge ratio by the regression. In particular,
consider the portfolio X, which contains $1 of share A and $- of share B, and denoteβ
to be the portfolio value at time i.8𝑋

𝑖
 

8 See Leung, T., & Li, X. (2015). Optimal mean reversion trading with transaction costs and stop-loss exit.



Step1: estimated (β, θ, µ, σ)

The hedge ratio is estimated by . Take the data of GLD and SLVβ 𝑎𝑟𝑔𝑚𝑎𝑥
β
𝑙(θ, µ, σ|𝑥

1:𝑁
)

from 2023-02-01 to 2023-04-01 as an example. Assume we invest $1 in GLD and $- inβ
SLV. The left graph shows the relationship between the log-likelihood and 100* . Inβ
that case, a portfolio with $1 in GLD and $- in SLV will provide us with the highest0. 58
likelihood.

Figure3 log likelihood change with respect to $- amountβ

Step2: using differential equations to find and𝑏(𝑒𝑛𝑡𝑟𝑦 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) 𝑑(𝑒𝑥𝑖𝑡 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

We may further refer to Li and Leung’s double optimal stopping problem (Li &
Leung, 2016), which would allow for the calculation of the optimal entry and exit
threshold. In particular, with the estimated , we can first find b in order to make(β, θ, µ, σ)
equation (3) holds. With that exit threshold b, we can then able to get the value of
equation (4), and by plugging equation (4) into equation (5), we can obtain the entry
level d.

(1)𝐹 𝑥, 𝑟( ) =  
0

∞

∫ 𝑢
𝑟
µ −1

𝑒
−𝑢2

2 +(𝑥−θ)𝑢 2µ

σ2

       

(2)𝐺 𝑥, 𝑟( ) =  
0

∞

∫ 𝑢
𝑟
µ −1

𝑒
−𝑢2

2 −(𝑥−θ)𝑢 2µ

σ2

       

(3)𝐹 𝑏( ) = 𝑏 − 𝑐( ) * 𝐹'(𝑏).        

𝑉 𝑑( ) = 𝑏 − 𝑐( ) 𝐹 𝑥( )
𝐹 𝑏( )         𝑖𝑓      𝑑 < 𝑏 

(4)              𝑜𝑟     𝑑 − 𝑐          𝑖𝑓 𝑑 > 𝑏 

(5)𝐺 𝑑( ) 𝑉' 𝑑( ) − 1( ) − 𝐺'(𝑑)(𝑉 𝑑( ) − 𝑑 − 𝑐



Below is the figure which shows the optimal entry and exit threshold of pairs that
contains GLD and SLV. Based on the given time period, the optimal entry point is
around .37, and the optimal exit threshold is around 0.475.

Figure.4 optimal entry and exit threshold for GLD and SLV from 2023-02-01 to

2023-04-01
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