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Introduction 

Soccer is undoubtedly the world’s most popular sport. It attracts millions of spectators 

and players of all ages and demographics. Despite its popularity, the application of data-driven 

methods to soccer has been slow. Though there are models that predict match outcomes to serve 

the ravenous betting market, relatively little consideration has been given to ranking soccer 

teams. In fact, no ranking system for college soccer currently exists. This stands in stark contrast 

to college football and basketball, in which systems such as Massey, KenPom, and Colley matrix 

have been created to rank teams. For over a decade, such ranking systems were used to help 

determine the participants in the college football national championship.  

Team rankings are important to generate compelling narratives for team performance. 

Rankings provide an ordinal structure that readily compares teams; when a low-ranked team 

defeats a high-ranked team, we can confidently declare that an upset occurred. When two high-

ranked teams play, we can state that two of the best teams squared off. In short, rankings are 

essential to creating such narratives. Winning percentage is an option but notably does not 

consider the level of competition a team has played. If a good team with a difficult schedule 

defeats a bad team with a much easier schedule, winning percentage would imply an inaccurate 

narrative that the first team upset the second. Betting odds offer an alternative, but sportsbooks 

neglect to offer regular betting odds for college soccer games. As a further benefit, rankings can 

provide means by which to predict game and score outcomes and inform playoff seeding.  



These reasons motivate the creation of a ranking system designed specifically for college 

soccer. In this paper, we create a ranking system for college soccer teams that has several key 

features that differentiate it from existing methods: (1) the model is derived probabilistically so 

that we can quantify uncertainty in our ratings, (2) each team’s rating is interpretable as the 

expected number of goals by which it would defeat an average college team, (3) draws are 

modeled directly, and (4) we use an adjusted margin of victory metric. We demonstrate that our 

model creates reasonable rankings that conform with our intuition and expert knowledge and 

outperforms our baseline model, the FIFA ranking system, in match outcome and score 

prediction. The paper is laid out as follows: in the next section, we introduce the existing 

methods, move to formulating our model, and then discuss our results before concluding and 

providing avenues for future work. 

Literature Review 

For our purpose, we will discuss football and basketball ranking methodologies in 

addition to soccer. Football and basketball are entirely different sports from soccer, but their 

modeling principles can still effectively be applied to soccer. The Colley matrix rankings, 

developed for football, use only game outcomes to simultaneously adjust each team’s winning 

percentage by strength of schedule. Also developed for football, the Wolfe rankings employ a 

Bradley-Terry model estimated via maximum likelihood estimation to approximate team 

strengths. Ley et al. apply similar methods to soccer in using Thurstone-Mosteller and Bradley-

Terry type models. Despite their interpretability, these models do not fully account for the 

strength of a victory. Surely, a 4-0 margin is more significant than a 1-0 margin and should be 

treated as such. To account for win margins, the Massey football rankings use the score of each 

game to create a prior distribution for each team’s power rating. The actual game outcomes are 



then used to provide a Bayesian correction to the team’ power rating to form the overall rating. 

Ley et al. include match score information by applying independent Poisson and bivariate 

Poisson models, improving their models mentioned earlier. Despite offering acceptable 

performance, these models are too simplistic as they fail to integrate in-game features, which we 

suspect are strong predictors of team performance. Moreover, they cannot easily be tailored to 

account for draws, a much more probable outcome in soccer than in soccer or football. 

 Considering more complex models, the KenPom rankings for college basketball apply 

the Kalman filter to update offensive and defensive efficiency ratings based on strength of 

schedule. Though KenPom is too basketball-specific to apply to soccer, its interpretation of each 

team’s rating as its expected margin of victory against an average college team is our inspiration 

for the interpretation of our ratings. Li et. al. (2020), in their analysis of Chinese Football Super 

League data, employ a linear support vector machine classifier to match outcomes. Team ratings 

for each game are then assigned according to the output of this classifier. For our purposes, we 

will consider a statistical, rather than a machine learning, approach so that we can quantify 

uncertainty. The most prominent method for ranking soccer teams is the Federation 

Internationale de Football Association (FIFA) rankings of national teams. The current ranking 

methodology, updated in 2018, has shown a stark improvement in providing rankings that reflect 

actual match outcomes. Employing an adjustive-rating system, each team’s rating changes 

according to the difference between its game result and predicted probability of victory with a 

multiplicative factor for match importance. As the only existing ranking system employed in 

high-level soccer, it will serve as our baseline upon which we will attempt to improve. 

Methods 

Model Specification 



Our goal is to create a ranking system for men’s and women’s NCAA Division I soccer 

teams that provides reasonable team rankings, predicts match outcomes and scores, and makes 

tournament projections. We will consider our ranking system successful if it can accurately 

predict at least 55% of three-way match outcomes (win, loss, and draw) and at least 85% of the 

teams that composed the field for the 2021 NCAA tournament. We chose this accuracy 

benchmark because predictive models for three-way outcomes for professional soccer generally 

have around 50% accuracy. 85% for tournament projections is a heuristic benchmark that 

considers the inherent randomness in the NCAA tournament selection process. 

Creating sports rankings is difficult because we never observe the true rankings. Instead, 

we must use a team’s performance throughout a season to discover the true rankings. 

Consequently, we do not have the true labels with which to compare our results to evaluate 

performance. As a proxy, we will use the United Soccer Coaches poll to determine if our 

rankings are reasonable.  In order to evaluate predictive performance, the current FIFA model 

will serve as our baseline model. Aside from being the only existing quantitative ranking system 

employed in high-level soccer, the difficulty FIFA faces in ranking national teams is very similar 

to ranking college soccer teams. In the four years between FIFA World Cups, national teams are 

mostly confined to playing teams within their own regions. Thus, FIFA must find a way to 

compare teams that never play and may have no common opponents. Similarly, in DI college 

soccer, 200 men’s and 350 women’s college soccer teams are grouped into conferences of 10-15 

teams with conference schedules accounting for roughly  !
"
  of each team’s games, providing few 

opportunities for crossover.   

For clarity, the FIFA model ranks teams by assigning each a rating which is then updated 

after each game according to: 
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where Result is 1 for a win, 0.5 for a draw, and 0 for a loss. 𝑟!" and 𝑟," are the ratings of teams A 

and B, respectively, at time 𝑡, 𝑝% is the a priori probability of victory, and I is the match 

importance factor. FIFA created the initial ratings for their model through a conversion of the 

ratings from the previous ranking model. To apply their model to college soccer, we will treat the 

value at which we initialize the ratings as a hyperparameter. As far as the match importance 

factor, college soccer differs from national team soccer in that there are never meaningless 

games. Whereas there are international friendlies in national team soccer that differ little from 

exhibition games, we have no analogue in college soccer. Every game affects either a team’s 

standing in their conference or their standing in the NCAA tournament, so we will set the match 

importance to be uniform across all games.  

Ranking college soccer teams requires adjusting a team’s performance by the strength of 

its opponent. FIFA’s model accomplishes this by using a team’s and its opponent’s ratings to 

create a probability of victory for each team prior to a game. A team’s rating is then updated 

according to a comparison between how a team was expected to perform, represented by their 

win probability, and how it actually performed, the result of the game. In this way, a team is 

rewarded less for winning games they were expected to win and more for games they were not. 

By updating ratings like this, we compare each team only to itself. This framework allows us to 

compare teams which may never play and may not even have any common opponents.  

FIFA’s approach of an adjustive-rating system is desirable for a few reasons. With an 

adjustive-based system, we have a consistent average rating across time, readily allowing 



comparison to an average team. This stands in contrast to an accumulation-based system wherein 

an average team’s rating is continuously increasing as the season progresses (with wins resulting 

in larger increases), making comparison less intuitive. Moreover, adjustive-rating systems allow 

for a differing number of games for each team, which will be the case for college soccer due to 

weather and postseason play.  

To improve FIFA’s model, we will make some significant changes. First, their model is 

not interpretable. Ratings generally range between 750 and 1800; it is unclear with this scale how 

much better one team is than another. If Belgium has an 1800 rating and England has a 1700 

rating, it is not intuitive how often and by how much we would expect Belgium to defeat 

England. To improve on this, our model will interpret each team’s rating as the expected number 

of goals by which it would beat an average team. Second, their model does not consider the 

margin of victory. The margin of victory should be informative in that teams that win by more 

tend to be better than those that scratch out wins. Third, their model does not allow for a home-

advantage effect. Home teams win a disproportionate number of games due to the crowd, 

familiarity with the playing surface, etc. Fourth, the FIFA model does not account for the effect 

of past performance on the current game. There may be a momentum effect in that a team may 

be more likely to win its next game given that it won its past few due to an increase in 

confidence; conversely, there may be an opposing regression to the mean effect so that a team 

performs closer to its true strength in its next game after overperforming in the past few. Fifth, 

the FIFA model does not consider draws. The model is formulated by assuming away draws as ½ 

of a win and ½ of a loss and then modeling solely the probabilities of win and loss. Draws are a 

far more probable outcome in soccer than other sports, accounting for as much as 20% of 
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outcomes, so we model the probability of a draw directly. Lastly, we introduce probability to 

quantify uncertainty. This allows us to measure how confident we are in our rating of each team. 

To formulate our model, let 𝑋! be a random variable which represents the expected 

number of goals by which team A would win or lose if it were to play an average college team.  

We assume 𝑋! has distribution 𝑁(𝜇!, 𝜎!-), as shown in Figure 1, and take 𝜇!, the mean of this 

distribution, to be the underlying rating for team A which we will hope to discover. 𝜇! represents 

the actual, long-run average expected number of goals by which a team would beat an average 

one. The standard deviation from this expectation 𝜎! measures our uncertainty in our rating of 

team A; it is composed both of uncertainty resulting from the randomness in team performance 

as well as the randomness in our ability to accurately determine the true rating.   

FIGURE 1. We let team A’s strength be described by a random variable 𝑋!. The mean 𝜇! represents the rating of team 

A while 𝜎! represents the amount of uncertainty we have in team A’s rating. 

By adding the assumption of transitivity, this framework of comparison to an average team 

allows for easy recognition of team strength and comparison between teams. If team A were to 

play team B, we assume that team A would defeat team B, on average, by 𝑋! − 𝑋, goals (if the 



result is negative, then we expect team B to defeat team A). To account for home-field 

advantage, we add a hyperparameter ℎ > 0 (referred to as the home advantage parameter) to our 

model so that we expect team A to beat team B by 𝑋! − 𝑋, + ℎ goals at home and 𝑋! − 𝑋, − ℎ 

goals on the road, i.e., ℎ is added to the home team’s strength. Our normal distribution 

assumption implies that 𝑋! − 𝑋, ± ℎ is distributed as 𝑁(𝜇! − 𝜇, ± ℎ, 𝜎!- + 𝜎,-), as shown in 

Figure 2, if we also assume that the correlation between these outcomes is 0. 

FIGURE 2. Left: Expected goal differentials of teams A and B in a game against an average team. Right: Team A’s 

expected goal differential in a game against team B. 

We note that we never actually observe 𝑋! − 𝑋, the expected number of goals by which team A 

beats team B. Instead, we observe only the realization of one game. We could use the goal 

differential as a realization of 𝑋! − 𝑋,, but doing so seems a poor approximation. Rather, we use 

the normal distribution implied by 𝑋! − 𝑋, to compute the probability of a win 𝑝%, draw 𝑝., and 

loss 𝑝/ for each game, as shown in Figure 3, and use the game result to track match outcome 

probabilities. In particular,  

𝑝% = ℙ[𝑟! − 𝑟, ± ℎ > 1] = 𝛷 =
𝜇! − 𝜇, ± ℎ − 1

>𝜎!
- + 𝜎,- ? 



𝑝. = ℙ[−1 ≤ 𝑟! − 𝑟, ± ℎ ≤ 1] = 𝛷 =
1 − (𝜇! − 𝜇, ± ℎ)

>𝜎!
- + 𝜎,- ? − 𝛷=

−1 − (𝜇! − 𝜇, ± ℎ)

>𝜎!
- + 𝜎,- ? 

𝑝/ = ℙ[𝑟! − 𝑟, ± ℎ < −1] = 𝛷 =
−(𝜇! − 𝜇, ± ℎ) − 1

>𝜎!
- + 𝜎,- ? 

where 𝛷 is the standard normal CDF.  

FIGURE 3. We formulate the probabilities of win, draw, and loss by taking any difference in expected goal differential 

less than -1 to be a loss, any difference greater than 1 to be a win, and anything in between as a draw. 

Using these probabilities, the outcome of each game can be modeled as a multinomial 

distribution with 1 trial and probability vector given by 𝑝 = (𝑝% , 𝑝. , 𝑝/) . By further assuming 

that game outcomes are independent, we can find the likelihood of observing the actual game 

outcomes as 

ℒ(𝜇, 𝜎) =C𝑝%
$(1$2$)

4

52$

𝑝.
$(1$2+.7)𝑝/

$(1$2+) 
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where 𝜇 is a vector composed of 𝜇5 , 𝑖 = 1, . . . , 𝑇, the ratings for all 𝑇 teams, 𝜎 is the vector 

composed of all 𝜎5 , 𝑖 = 1, . . . , 𝑇, 1(⋅) is the indicator function, 𝑦5 is an indicator for the result for 

game 𝑖 with 1 for win, 0.5 for draw, and 0 for loss, and 𝑛 is the number of total games played. 

To estimate 𝜇5 and 𝜎5, we perform maximum likelihood estimation by conducting online 

gradient descent on the negative log-likelihood. This is appealing because the result is an 

adjustive-rating system, the merits of which we have discussed previously. In performing online 

gradient descent, we take each successive game a team plays, compute the gradients for the 

rating and its volatility using the prior values and the information from that game, and update our 

prior estimates. For a game between team A and team B, the gradients for team A are: 

For 𝑦5 = 1, 

∇8!ℓ =
𝜙=

𝜇! − 𝜇, ± ℎ − 1

>𝜎!
- + 𝜎,- ?

𝛷 =
𝜇! − 𝜇, ± ℎ − 1

>𝜎!
- + 𝜎,- ?>𝜎!

- + 𝜎,-
 

∇9!ℓ =
−𝜙 =

𝜇! − 𝜇, ± ℎ − 1

>𝜎!
- + 𝜎,- ? (𝜇! − 𝜇, ± ℎ − 1)𝜎!

𝛷 =
𝜇! − 𝜇, ± ℎ − 1

>𝜎!
- + 𝜎,- ? (𝜎!

- + 𝜎,-):/-
 

For 𝑦5 = 0, 

∇8!ℓ =
−𝜙=

−(𝜇! − 𝜇, ± ℎ) − 1

>𝜎!
- + 𝜎,- ?

𝛷 =
−(𝜇! − 𝜇, ± ℎ) − 1

>𝜎!
- + 𝜎,- ?>𝜎!

- + 𝜎,-
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∇9!ℓ =
−𝜙=

−(𝜇! − 𝜇, ± ℎ) − 1

>𝜎!
- + 𝜎,- ? (−(𝜇! − 𝜇, ± ℎ) − 1)𝜎!

𝛷=
−(𝜇! − 𝜇, ± ℎ) − 1

>𝜎!
- + 𝜎,- ? (𝜎!

- + 𝜎,-):/-
 

For 𝑦5 = 0.5, 

∇8!ℓ =

1

>𝜎!
- + 𝜎,- N

−𝜙 =
1 − (𝜇! − 𝜇, ± ℎ)

>𝜎!
- + 𝜎,- ? + 𝜙=

−1 − (𝜇! − 𝜇, ± ℎ)
>𝜎!

- + 𝜎,- ?O

𝛷 =
1 − (𝜇! − 𝜇, ± ℎ)

>𝜎!
- + 𝜎,- ? − 𝛷 =

−1 − (𝜇! − 𝜇, ± ℎ)
>𝜎!

- + 𝜎,- ?

 

∇9!ℓ

=
−𝜙=

1 − (𝜇! − 𝜇, ± ℎ)
>𝜎!

- + 𝜎,- ?
P1 − (𝜇! − 𝜇, ± ℎ)Q𝜎!

(𝜎!- + 𝜎,-):/-
+ 𝜙 =

−1 − (𝜇! − 𝜇, ± ℎ)
>𝜎!

- + 𝜎,- ?
P−1 − (𝜇! − 𝜇, ± ℎ)Q𝜎!

(𝜎!- + 𝜎,-):/-

𝛷 =
1 − (𝜇! − 𝜇, ± ℎ)

>𝜎!
- + 𝜎,- ? − 𝛷 =

−1 − (𝜇! − 𝜇, ± ℎ)
>𝜎!

- + 𝜎,- ?

 

where 𝜙 is the pdf of the standard normal and ℓ is the log-likelihood. Looking at these 

expressions seems daunting, but a few observations become clear when examining them 

analytically. Teams that win when they are expected to win, i.e., are rated higher than their 

opponent beforehand, receive a smaller update than those that are not as shown in Figure 4. 

When a team performs how we expect them to perform, i.e., win when they are expected to win, 

our uncertainty in their rating decreases. When we are more certain about a team’s or its 

opponent’s rating, its rating update is larger in magnitude regardless of win or loss. Intuitively, if 

we are more certain that a team’s opponent is really good, then that team should receive a larger 

update for winning. Conversely, if we are more unsure about a team’s rating, we would like to be 

more conservative with our updates. There is a greater chance that team may actually be much 

better than their rating suggests, so we do not want to penalize it as much for a loss. Lastly, when 



a team performs as we expect, the decrease in volatility is larger in magnitude as our prior 

certainty in that rating increases. This is to say that we become increasingly confident in our 

ratings when teams perform as we expect. On the other hand, when teams do not perform as we 

expect, the increase in volatility is larger as our prior uncertainty increases.  

An underlying assumption we made in our model formulation is that game results are 

independent. This may not be true in practice. Recent past performance seems to have a 

significant effect on a team’s current performance. A team that has played extremely well in their 

past 2-3 games may be much more likely to win their next game than their overall performance 

over the entire season would suggest. On the contrary, a team may win a few games in a row due 

to lucky bounces in which case that team might be less likely to win its next game than its 

current rating would suggest. To account for momentum and regression to the mean, we add a 

term for prior performance to our update. This term adds or subtracts, depending on the sign, a 

percentage 𝛽 (referred to as the prior performance parameter), of the prior update to or from the 

current update so that recent performance is better reflected in a team’s rating. If 𝛽 > 0 and a 

team has had a few victories in a row, the term serves as a momentum effect that increases that 

team’s rating so that its win probability is higher for its next game. If 𝛽 < 0 and a team has had a 

few victories in a row, the term serves as a regression to the mean effect that damps its rating 

increase so that its win probability is lower for its next game. We tune 𝛽 using positive and 

negative values to determine which of the momentum or regression to the mean effects is more 

relevant for college soccer. Specifically, we update a team’s rating and its volatility after each 

game according to 

𝑟!"#$ ← 𝑟!" − 𝛼∇(!ℓ + 𝛽(𝑟!
" − 𝑟!"&$) 

𝜎!"#$ ← 𝜎!" − 𝜅∇9!ℓ 
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where 𝛼 and 𝜅 serve as the step size parameters. 𝜅 is a hyperparameter that we tune (referred to 

as the volatility update parameter); we also treat the initialization of the volatility, which is 

initialized uniformly across all teams, as a hyperparameter (referred to as the initial volatility 

parameter). 

By construction, the gradient depends only on the game outcome and the prior estimates. 

As a result, a winning team receives a positive update regardless of how that outcome was 

achieved and vice versa for a losing team. To use margin of victory in our rating updates, we 

incorporate an adjusted measure of goal differential into 𝛼, denoted by AGD. We use an adjusted 

measure because goal differential does not always provide an accurate depiction of a team’s 

performance. Since soccer is a low-scoring sport, outcomes can have high variance. A team may 

have possession for much of the game and dominate its opponent but only win 1-0. Using goal 

differential alone would not adequately reward this team for its performance. To adapt our model 

to such outcomes, we create an adjusted goal differential metric by using in-game statistics, such 

as shots, corners, and saves, to predict what the goal differential should have been. Since in-

game statistics should predict goal differential well, the predicted goal differentials from such a 

model offer a reasonable adjustment to the observed goal differentials. We will discuss the 

specifics of this model in the variable selection and modeling section. Moreover, to further 

integrate in-game features more directly into our model, we also use shot differential, denoted by 

SD, as part of the step size. Thus, for the rating update step size, we have 

𝛼 = 𝛾!<=√𝐴𝐺𝐷 + 𝛾>=√𝑆𝐷 

where 𝛾!<= , 𝛾>= are hyperparameters (referred to as the goal differential and shot differential 

update parameters), and we use the square root to moderate the effect of outsized goal or shot 

margins.  



One technical detail that must be addressed is the identifiability of our model. Using 

maximum likelihood estimation when the model specification is unidentifiable tarnishes any 

ability that we have to interpret our parameter estimates. Since the game outcome probabilities 

are specified in terms of the difference in ratings, it is easy to see that adding any fixed constant 

will yield an equivalent parametrization. To enforce identifiability, we constrain the mean of the 

ratings to be 0 so that an average team corresponds to a rating of 0. A convenient property of our 

model specification without the prior performance term is that rating updates are zero-sum, i.e., 

every team’s gain in rating corresponds to another team’s loss of rating (incorporating the prior 

performance term yields a negligible difference from 0). This can be easily shown using the fact 

that any normal distribution is symmetric about its mean. Thus, in practice, we can enforce 

identifiability by initializing each team’s rating at 0. This initialization makes sense anyway 

because we have no reason at the outset to designate some teams as better or worse than others. 

By initializing everyone at 0 though, this implies that every team has roughly the same (not 

exactly the same due to the home-advantage effect) chance of winning its first game. 

Consequently, the model may need a substantial number of games before the ratings are well-

calibrated and accurately reflect each team’s strength. We need to be cognizant of this concern 

and analyze our results over time to understand the effects of this assumption. To mitigate this 

effect and since the same teams tend to be good or bad from year to year, for each season after 

the first, we initialize each team’s rating at its final rating from the previous season. 

To apply our model to match outcome and score prediction is a relatively simple task. We 

model the probabilities of win, loss, and draw directly, so we predict the outcome of any game as 

the outcome which corresponds to the highest predicted probability. Moreover, since our ratings 
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represent the expected number of goals by which a team beats an average one, we can predict the 

goal differential as the difference in the prior ratings.  

We note that our hyperparameters cannot be tuned through a rigorous method such as 

cross-validation. We create the win probabilities and rating updates jointly; the win probabilities 

cannot be created until the ratings are updated, and the ratings cannot be updated until the win 

probabilities are determined. As a result, we trained our model on the entire 2020 season, using a 

grid of values for our hyperparameters and iterating through each possible combination, 

ultimately selecting the combination that corresponded to the minimum mean squared error 

between our predicted goal differentials and the observed goal differentials because we would 

like the ratings to represent the predicted score margin as accurately as possible. For the 

hyperparameters of FIFA’s model, since their model is not applicable to score prediction, we 

used the Brier score, which measures the mean squared deviation of the probabilities from the 

outcome. 

Data 

To implement our model, we have obtained team-level and player-level data for DI men’s 

and women’s college soccer teams for the 2020-2022 seasons. The player-level data pertains to 

individual player statistics collected throughout each game of the season, including goals, shots, 

and fouls, for example. The team-level data consists of the player-level data aggregated across 

the entire team for each game of the season. Though the data has been cleaned and relatively few 

values are missing, this is because many missing values were recorded as 0 instead. This is 

particularly true of the player-level data. For this reason, we discarded player-level statistics. 

Otherwise, we are fortunate to have team-level stats and results for every game for every team 

for the seasons listed.  
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Preprocessing 

We found that for 1,333 games, about 9% of the games, the number of shots was not 

equal to the number of shots on target plus the number of shots off target. Fortunately, this error 

was due to missing values for shots off target for all but 70 games and was imputed as the 

difference in the number of shots and the number of shots on target. For those 70 remaining 

games (0.5% of games), the number of shots were recorded, but neither the shots on target nor 

shots off target were recorded. We imputed the number of shots on target as the floor of the 

overall percentage of shots on target for all games multiplied by the number of shots. We chose 

not to employ a more in-depth imputation model given the small number of missing 

observations. The shots off target were inferred as before. We then used the shot data and the 

number of goals to infer saves and save percentages for each team and its opponent. These 

numbers were largely the same except for a few instances. We turn now to our model to create 

the margin of victory metric. 

                                       Variable Selection and Modeling 

After conducting preprocessing, we determined which features were salient for predicting 

goal differential.  This was done through Bayesian linear regression. Using Zellner’s g-prior with 

α as the number of games in our data, we performed a search over all possible linear models and 

found the marginal likelihood of each model given the data. From this, we determined the 

marginal inclusion probability of each variable and selected the following variables using a 

threshold of 40%: shots, shots on target percentage, offsides, goal kicks, saves, and save 

percentage, where each variable is for both the team and its opponent. We used a low threshold 

to include any variables that could potentially be informative in predicting goal differential. 



For our model of goal differential, we opted to use a random forest since it offered strong 

predictive performance while also allowing us to have some measure of variable importance. We 

tuned its hyperparameters via ten-fold cross-validation on the data for the prior seasons. For the 

2021 season, the 2020 data was used to select the hyperparameters; for the 2022 season, the 2020 

and 2021 data were used. For the 2020 season, we used the true goal differentials in our ratings 

updates to allow for sufficient data to be gathered to adequately predict goal differential. For the 

2021 and 2022 seasons, we used the data from all prior seasons to train the goal differential 

model for the current season. The predicted goal differentials from these models then served as 

our margin of victory metric. While we considered re-training the model after each week of 

games, we decided against this to avoid an excessive computational burden. Though we worried 

this might lead to underfitting, we found our training and test 𝑅! values to all be around 0.95. 

From this, we conclude that our margin of victory metric is very close to the observed goal 

differential the majority of the time but helps us account for those games where in-game 

statistics paint a different picture of a team’s performance. 

A drawback of using a machine learning algorithm within our rating updates is that we 

lose the ability to directly see how our updates are made. Though we may gain the ability to 

better reflect a team’s performance, we cannot see how in-game statistics are aggregated within 

the random forest to create the adjusted goal differential metric. Fortunately, with a random 



forest, we can at least use gini impurity to create a measure of variable importance, which then 

allows us to see which variables are dictating the magntiude of the update. From Figure 4, it is  

FIGURE 4. Saves, shots, and their respective percentages dictate the margin of victory. 

clear that save percentage and the number of saves and shot on target percentage and the number 

of shots (as we would expect) are the most influential factors in the magnitude of the margin of 

victory metric. 

Before we move to our results, a few nuances of the goal differential model must be 

considered. First, a team’s and its opponent’s adjusted goal differential must be equal in absolute 

value. The random forest cannot impose this condition, so we enforce it by using the average of 

the absolute value of the two adjusted goal differentials. The average of the two is only 

marginally different from the previous values and likely does not affect our results, but we 

enforce this condition for the sake of thoroughness. Second, we impose the condition that the 

result reflected by the adjusted goal differential is the same as that reflected by the observed goal 

differential. To be rigorous, we impose the condition that the signs of the adjusted and observed 

goal differentials are equal. This ensures that teams are always rewarded for winning and 

penalized for losing. If a team has differing signs for observed and adjusted goal differential, we 
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set the adjusted goal differential to be the sign of the observed goal differential multiplied by 0.5. 

For example, suppose a team wins a game by one goal but has an adjusted goal differential of  

-0.5 goals. Given the differing signs, we can say that this team won a game that it actually should 

have lost. However, we believe that we should actually reward this team for its victory. This is 

because strong teams find ways to win games that they should lose whereas weak teams blow 

winnable games. At the same time, we need to penalize this team for playing poorly, which is 

achieved by the 0.5 factor. This factor decreases the margin of victory so that the team receives a 

smaller, though positive, update. In our example, the team would have a margin of victory of 0.5, 

which we believe finds a balance between reward for a win and penalty for poor performance. 

A consequence of imposing this sign condition is that the margin of victory for a draw is 

always 0, which corresponds to an update of 0. This implies that a draw contains no information 

about a team’s rating, which is not always the case. When a team is much better than their 

opponent, then a draw is effectively a loss. In fact, the gradient for a draw asymptotically 

approaches the gradient for a loss as the ratings difference between a team and its opponent 

becomes large as we can see in Figure 5.  

FIGURE 5. A draw asymptotically approaches a win as its ratings difference with its opponent decreases and 

asymptotically approaches a loss as its rating difference increases. 



To account for this, we set the margin of victory for a draw to be 0.5. The update will still be 

small when the ratings difference is small, as before (from Figure 5 the gradient will be very 

close to 0), but will move away from 0 when the ratings difference becomes large. 

Results 

After tuning our model on the 2020 season for both the men’s and women’s models, we 

found our hyperparameters to be 0.75 for the goal differential update parameter, 0.5 for the 

volatility update parameter, 0.25 for the shot differential update parameter, and -0.05 for the 

prior performance parameter for both models. That the prior performance term is negative 

indicates that the regression to the mean effect outweighs the momentum effect for college 

soccer generally. Interestingly, the initial volatility parameter was 2 for the men’s model and 

1.75 for the women’s model. This difference likely arises from the smaller talent disparity in 

men’s soccer which creates more similarly rated teams and higher uncertainty in each team’s 

rating. We also found the home advantage parameter to be 0.4 for the women’s model but 0.2 for 

the men’s model. Women’s college soccer is more popular and tends to have higher attendance 

which creates a larger home-advantage effect, on average. 

Our first and foremost goal is to have a model that is interpretable; we believe that this 

advantage is what most sets our model apart from FIFA’s model. Though our model’s 

interpretability has a strong foundation in probability, we need to ensure our results conform 

with our expectations, i.e., we need to make sure each team’s rating provides a reasonable value 

for the average number of goals by which it would defeat an average college team. Below in 

Tables 1 and 2, we have the five highest-rated and five lowest-rated teams from the models for 

the women’s 2021 season and the men’s 2021 season.  
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We can see that the ratings generally lie in the interval [-4,4] for the women’s and [-3,3] for the 

men’s with a few exceptions. With 350 women’s DI college soccer teams, this implies that the 

best women’s teams would beat the 175th-best team by about four goals and the worst teams by 

about eight goals. Similarly, with 200 men’s teams, the best men’s teams would beat the 100th-

best team by about three goals and the worst teams by about six goals. This matches our intuition 

and provides a very easy comparison of teams, both to average and each other. A rating of 5.32 

might seem very high for Florida St., but we believe it is very reasonable given that Florida St. 

regularly beat very strong teams by multiple goals on its way to the 2021 national championship. 

Having demonstrated that our ratings are interpretable, we can move to examining our 

model’s predictive performance. The most critical component of our model is ensuring that the 

outcome probabilities are well-calibrated. For our model to make accurate updates, the model 

probabilities must accurately represent the true probabilities of the three outcomes. One way to 

measure whether these probabilities are well-calibrated is by analyzing what they imply as far as 

predicted outcomes. In Tables 3 and 4, we have the accuracy for our model and the baseline 

FIFA model for 3-way match outcomes.  
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Our model meets our performance benchmarks and outperforms the FIFA model. Moreover, the 

model’s performance improves from the 2020 season to the 2021 season, providing evidence that 

the model can better learn each team’s strength as it accumulates more games. There appears to 

be a dip in performance from 2021 to 2022, but this is due to an NCAA rule change that removed 

the overtime period from regular season games. This increased the proportion of draws from 

11% to 22%, and draws are extremely difficult to predict. Nonetheless, providing such high 

accuracies with a relatively simple, interpretable model is almost astonishing, especially given 

that the model’s main purpose is not outcome prediction. For comparison, Ulmer et al. achieve 

an accuracy of around 50% for 3-way outcomes using various machine learning models on 

English Premier League data (though the proportion of draws in the Premier League is 29%). 

Another method to check whether our probabilities are well-calibrated is using the Brier score. 

The Brier score is given by 
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where N is the number of instances, R is the number of classes for each instance, 𝑓"5 is the 

predicted probability for class i for instance t, and 𝑜5" is an indicator for if instance t belongs to 



class i. This metric measures the mean squared difference between the outcome of each instance 

and its predicted probabilities. Consequently, a smaller value indicates better calibrated 

probabilities. We can see that our model has better calibrated probabilities when compared to the 

FIFA model. With these results, we can be confident that our model can be applied to match 

outcome prediction, and our win probabilities are well-calibrated, so our model is accurately 

updating ratings. 

 Now that we have examined our match outcome prediction results, we can move to our 

score prediction results. As stated previously, we use the difference in a team’s and its 

opponent’s prior ratings as the predicted goal differential for that game. We have no similar 

model with which to compare results because FIFA’s model is not applicable toward match score 

prediction. Moreover, it would not make sense to compare performance with a model 

specifically trained for this task because our model is not. Without a comparable model, we will 

have to evaluate our results in absolute terms. In Table 5, we can see our performance as 

measured by the root mean squared error and the R2 value.  

Given the low scoring nature of soccer games, it is clear that our results may leave something to 

be desired, but this was not unexpected. Match score prediction is a difficult task, especially 

given that we use solely a team’s and its opponent’s overall strengths. Though we do not capture 

the exact goal differential particularly well, we do capture the general trend, i.e., as the predicted 

goal differential increases, the observed goal differential increases, on average. Given that we 

capture this relationship, we believe that our model provides utility in predicting match scores. 
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 A natural question to ask is what aspect of our model is driving the increase in 

performance. To answer this, we tested numerous variations of our model in which we subtracted 

the various improvements we made. We found that the majority of the performance improvement 

is a result of the home-advantage effect while the adjusted margin of victory metric and the prior 

performance term both result in slight improvements. If we model solely two outcomes (win and 

loss) as the FIFA model does, we find that our accuracy and RMSE actually improve. This is a 

result of the fact that modeling draws is difficult and introduces more uncertainty in prediction. 

However, we still prefer to use the model that handles draws directly because its Brier score is 

significantly lower than the model that does not. This is particularly true of the 2022 season in 

which the proportion of draws increased greatly and will be the case moving forward. 

We would be remiss to not mention the tournament projections implied by our model. 

With the impact of the COVID-19 pandemic, half of the 2020 season was held in the fall of 

2020, and the other half, including postseason play, was held in the spring of 2021. Given the 

shortened schedules and odd nature of the season, we did not make projections for the 2020 

NCAA tournament. Likewise, we only have about 60% of the games for the 2022 season, so we 

did not make projections for this season either. For the 2021 women’s NCAA tournament, we 

accurately predicted 22 out of 31, or 71%, conference winners. Given the randomness of 

conference tournaments, since they are only a few games in length, this is fairly strong 

performance. Of the nine teams that we did not accurately predict as winning their conference 

tournaments, all were ranked second in their respective conferences except for Santa Clara who 

was ranked third. With respect to the 2021 men’s NCAA tournament, we predicted 14 out of 23, 

or 61% of conference winners. Of the nine incorrect predictions, seven of the nine true winners 

were ranked second in their conference. The other two, Mercer and Notre Dame, were ranked 



third and sixth, respectively. The fact that Notre Dame was ranked sixth and won their 

conference is not a cause for concern given the Atlantic Coast Conference’s depth and strong 

reputation for soccer. Overall, these results indicate that we generally capture the correct within-

conference rankings.  

For the at-large bids for the women’s tournament field, we mistakenly gave at-large bids 

to Gonzaga, Oklahoma St., Utah Valley, and West Virginia. Of the 33 teams to receive at-large 

bids, they were ranked 21st, 27th, 29th, and 22nd, respectively. We did not give at-large bids to 

Alabama, LSU, NC State, Ohio St., SMU, and Wisconsin who were ranked 122nd, 59th, 80th, 78th, 

65th, and 70th among all teams, respectively. For reference, the last at-large bid was given to St. 

John’s who was ranked 57th overall. We note that the difference in the number of teams comes 

from having conference winners in our projected field who did not actually make the tournament 

and then giving at-large bids to the actual conference winners. For the men’s at-large bids, we 

incorrectly gave at-large bids to Belmont, Cornell, James Madison, and Stanford. Of the 25 

teams to receive at-large bids, they were ranked 12th, 23rd, 16th, and 15th, respectively. We did not 

give at-large bids to Charlotte, Creighton, Louisville, Portland, UCLA, and Villanova who were 

ranked 48th, 63rd, 71st, 74th, 81st, and 99th, respectively, among all teams. For reference, the last 

at-large bid was given to St. John’s who was ranked 46th overall. With these results, we see that 

the teams that we incorrectly did not include were reasonably close to making the projected field, 

and the teams we incorrectly included were generally on the cusp of not making the projected 

field. Overall, we projected 56 out of 64 women’s teams correctly, or 87.5%, and 40 out of 48 

men’s teams correctly, or 83.3%. Our projected fields have a strong correspondence to the true 

ones, which assures us that our model can make tournament projections, and our rankings 

resemble the true ones.  



Discussion 

FIGURE 6. Left: The top 25 rankings from the United Soccer Coaches poll and our model from the final week of the 

2021 women’s season. Right: The top 25 rankings from the United Soccer Coaches poll and our model from the final week of the 

2021 men’s season. 

After showing our model has the necessary applications, we can now examine the 

rankings themselves. To determine whether our rankings are reasonable, we compare the top 25 

ranked teams in the United Soccer Coaches poll at the end of the 2021 season with the rankings 

from our men’s and women’s model in Figure 6. Due to the subjective nature of the coaches’ 

poll, we do not want to match its rankings exactly, but we do want our rankings to lie reasonably 

close since these rankings incorporate expert knowledge. We can see that our rankings are 

positively correlated with the coaches’ poll; most teams lie close to the coaches’ poll with a few 

teams ranked significantly higher or lower. In particular, the correlation between our rankings 

and the coaches’ poll is 0.63 and 0.73 for the men’s and women’s model, respectively. Following 

the approach of Colley, we can measure the difference in rankings using the mean percentage 

difference, which is given by 𝜂 = 𝑒
%
&'∑ |/CD(5()&/CD(5))|&'

$*% . Colley demonstrates that this measure 

of the difference in rankings is much better behaved than the mean absolute difference. For the 

men’s and women’s model, η is 1.85 and 1.67, respectively, so our rankings differ by 85% on 



average for the men’s model and 67% on average for the women’s model. Thus, around rank 10, 

we differ by about 8 spots for the men’s model and 6 spots for the women’s model. In 

quantifying the difference, we can see that despite the positive correlation, our rankings seem to 

differ significantly between our model and the coaches’ poll. However, the seemingly large 

difference is a result of only a few large deviations. η is 1.48 and 1.44 for the men’s and 

women’s models if we remove the four largest percent deviations, which seems to be a fairly 

moderate difference. These large deviations are mostly a function of the NCAA tournament 

results. For example, Notre Dame’s men’s team had a tremendous run to the final four of the 

tournament, which led to it being ranked 4th in the coaches’ poll. However, our model uses a 

holistic view of the entire season, not just the past few games, and therefore, Notre Dame was 

ranked 29th given its poor performance earlier in the season. Even if our rankings completely 

disagreed, it is unclear whether disagreement with the coaches’ poll is necessarily bad. The 

coaches’ poll is biased as coaches tend to overrate the teams within their own conference to 

make their own team look better. In general, coaches tend to overrate teams in typically stronger 

conferences and underrate teams in typically weaker conferences. Given the moderate percent 

deviation and fairly strong positive correlation though, we believe these results provide evidence 

that our model provides reasonable rankings that conform with common sense.  

Two properties our model must possess are sensitivity to unexpected outcomes and 

stability. If a team underperforms for the first portion of the season but then rights the ship and 

starts to perform much better, we want our model to recognize that change in performance and 

make large, positive updates to that team’s rating to reflect that it is much better now than their 

previous ratings suggested. At the same time however, we do not want updates to always be 

large. If this were the case, then our rankings would change drastically from week to week as the 



ratings move erratically. This is undesirable because we will lose the information from games 

much earlier in the season, and the rankings will be dependent upon the nuances of the schedule. 

To determine our model’s ability to balance these two properties, we have found the size 

of each team’s change in ranking and rating over the 2021 season. These results are plotted 

below in Figure 7.  

FIGURE 7. Left: Distribution of the absolute value of the change in ratings after each game for all teams. Right: 

Distribution of the absolute value of the weekly change in rankings for all teams. 

For the change in ratings, we see that the vast majority are concentrated between 0 and 0.2. 

Using our ratings interpretation, this implies that each team’s rating generally changes by 

between 0 and a fifth of a goal, which seems fairly small. Similarly, the majority of rank changes 

are between 0 and 10 for the men’s model and 0 and 15 for the women’s model. Given that there 

are 200 men’s teams and 350 women’s teams, this range appears modest. In sum, our model 

captures the stability property. At the same time, we can also see long tails in the distributions. 

These tails encapsulate those unexpected outcomes that led to significant rating changes of 

upwards of half of a goal and ranking changes of 50-75 spots. The tail appears relatively light 

though, providing evidence for the stability of our model. Overall, the average change in ranking 

from week to week is 9.1 for the men’s model and 13.4 for the women’s model (very similar to 



the FIFA model results), which we believe represents a good balance between sensitivity and 

stability. 

One limitation of our model is the starting point of the ratings for each season. We cannot 

track player turnover between seasons, so we do not know how to adjust the final rating from the 

prior season to reflect offseason changes. Initializing at last year’s final rating is not ideal 

because we do not want a team’s rating to be beholden to their performance from the prior 

season. If updates are not aggressive enough, then a team’s rating will be dependent upon its 

performance from the prior year. To check how quickly our ratings adjust to the new season, we 

have plotted our predictive performance over time for the 2021 and 2022 seasons below.  

FIGURE 8. Evolution of the goal differential error, measured as the root mean squared error of the difference in prior 

ratings from the observed goal differential, as the season progresses. 

After 4-6 games, there is a clear dip in the goal differential error, which suggests that the model 

needs several games to learn each team’s new strength. For this reason, we should avoid 

interpreting ratings until five or six games have occurred. 

To test this carryover assumption more rigorously, we perturbed the final ratings for the 

2020 season using mean zero Gaussian noise with a standard deviation of 0.25. Using ten 

different random initializations, we found the mean percentage difference, η, between the final 
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rankings from the random initialization and the final rankings from our model for the 2021 

season. Averaging over all ten random initializations, we found η = 1.04 for the women’s model, 

and η = 1.08 for the men’s model. Thus, the overall difference in rankings is very small, so the 

rankings generally are not very sensitive to their initial values over the course of an entire 

season. In addition, the average deviation of the ratings with random initialization from our 

model’s ratings decreases from 0.2 at the beginning of the season to 0.10 and 0.07 by the end of 

the season for the men’s and women’s model, respectively. That the difference shrinks indicates 

that all ratings are converging to the same value, the true rating for each team. Ideally, the 

difference would shrink to 0, but in practice, this will not occur with only around 20 games per 

team. Nevertheless, the convergence of the difference seems slightly slow. Thus, if a team 

changes drastically over the offseason, then their rating for the next season may not be a great 

depiction of their actual strength. 

Conclusion 

In conclusion, we have created a ranking system for college soccer that provides 

reasonable rankings, predicts match outcomes and scores, and makes tournament projections. 

The model is interpretable, efficient, and exhibits strong performance. We incorporate draws 

directly and use in-game features to yield a holistic view of team performance. Unlike other 

ranking systems, the model is probabilistic, enabling us to quantify uncertainty, and our 

modeling principles are generalizable to different sports, permitting adaptation of the model 

outside of college soccer. Though we believe strongly in our model, there are several avenues for 

improvement. Integrating off-season knowledge to better initialize the model each season would 

improve the model significantly. Furthermore, teams have varying home-field advantages, so 

estimating a different home-field advantage effect for each team could better reflect team 
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performance. It would also allow us to determine the toughest places to play across the country 

and provide interesting narratives for which teams have the most raucous fans. Lastly, 

incorporating player-level data is a worthy pursuit. Adjusting a team’s rating based on a star 

player, like FiveThirtyEight does with quarterbacks in their NFL model, may provide intriguing 

results since star players have an outsized effect on team performance in soccer. 
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Introduction 
The Arria Boost project is designed to rank college soccer teams, focusing on NCAA 

Division 1 men's and women's teams. This project has been developed in three programming 
languages: Python, R, and JavaScript. It comprises two primary components: the machine 
learning prediction, which constructs a model to rank the teams, and the visualization dashboard, 
which displays narratives of the results generated by the model. 

 
Repository Structure 
src: Contains the source code for the core Arria Boost machine learning component. The 

python files only have the data preparation stage. 
boost-sports-soccer-dashboard: Contains the source code for the core visualization 

dashboard. The dashboard has a backend and frontend. 
docs: Houses the project documentation, including this technical guide. 
.gitignore: This file specifies which files or directories should be excluded from version 

control when using Git. 
.gitmodules: This file specifies the git modules information for the project 
README.md: This file provides any technical documentation about the project. 
requirements.txt: specifies python library dependencies for the project. 
 
System Requirements 

1. R Studio 
2. Python 3.8 and above 
3. Docker 

 
Installation Guide 
 

1. Clone the Gitlab repository. You can use SSH or HTTPs for this. 
a. git clone https://gitlab.oit.duke.edu/duke-mids/workingprojectrepositories/arria-

boost.git 
b. Go into boost-sports-soccer-dashboard folder e.g., cd boost-sports-soccer-

dashboard and clone the dashboard repository e.g., git clone 
https://github.com/missvicki/boost-sports-soccer-dashboard 

 
2. Machine Learning Prediction component 

a. Open R studio on your machine 

https://gitlab.oit.duke.edu/duke-mids/workingprojectrepositories/arria-boost.git
https://gitlab.oit.duke.edu/duke-mids/workingprojectrepositories/arria-boost.git


b. Open the project in the destination you cloned your repository and execute all R 
files in the src folder not entitled “Run Everything”. 

c. Execute the “Run Everything” script to run all models. 
Note: You will have to install library dependencies on this project. 

3. Visualization dashboard 
1. Begin by creating .env files within the backend and frontend folders. 

- Add the following lines to the frontend/.env file. 
o REACT_APP_MAIN_VERSION=api 
o REACT_APP_API_URL=http://localhost:8000 

- Add the following lines to the backend/.env file. 
o FLASK_APP=app.py 
o AWS_ACCESS_KEY_ID=hadkjdkajueooajd 
o AWS_SECRET_ACCESS_KEY=ajjdkajd8039288492 
o AWS_S3_BUCKET=boost-sports-duke 
o ENVIRONMENT=dev 

 
2. Run the application. 

a. Option with docker compose. 
i. Go into the boost-sports-soccer-dashboard folder. 

ii. Start running docker on your machine. 
iii. Run docker compose up –build -d to run the application. 
iv. Run docker compose logs -f to see the application logs. 
v. Run docker compose stop –volumes to stop running the application. 

vi. Run docker system prune to clean images and volumes. 
 

b. Option 2 run the backend and frontend separately. 
§ Backend 

• Go into the backend folder. 
• Create a python virtual environment. 
• Activate the python virtual environment. 
• Install python dependencies with pip install -r requirements.txt. 
• Run flask run –reload –host=localhost –port=8000. 

§ Frontend 
• Go into the frontend folder. 
• Run npm install. 
• Run npm start. 

 
Contact and Support 
 
If you need additional assistance or have questions that are not covered in this 

documentation, feel free to reach out to the Arria Boost development team. 
 
We hope this technical documentation serves as a valuable resource in helping you 

understand and utilize the Arria Boost project to its fullest potential. Happy coding! 

 


